Adaptive Relaxations for Multistage Robust Optimization

نویسندگان

چکیده

Multistage robust optimization problems can be interpreted as two-person zero-sum games between two players. We exploit this game-like nature and utilize a game tree search in order to solve quantified integer programs (QIPs). In algorithmic environment relaxations are repeatedly called asses the quality of branching variable for generation bounds. A useful relaxation, however, must well balanced with regard its computing time. present that incorporate scenarios from uncertainty set, whereby considered set is continuously adapted according latest information gathered during process. Using selection, assignment, runway scheduling testbed, we show impact our findings.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multistage Adaptive Robust Optimization for the Unit Commitment Problem

The growing uncertainty associated with the increasing penetration of wind and solar power generation has presented new challenges to the operation of large-scale electric power systems. Motivated by these challenges, we present a multistage adaptive robust optimization model for the most critical daily operational problem of power systems, namely the unit commitment (UC) problem, in the situat...

متن کامل

Adjustable Robust Multistage Optimization

Format (5.1.1) covers all uncertain optimization problems considered so far; moreover, in these latter problems the objective f and the right hand side F of the constraints always were bi-affine in x, ζ, (that is, affine in x when ζ is fixed, and affine in ζ, x being fixed), and K was a “simple” convex cone (a direct product of nonnegative rays/Lorentz cones/Semidefinite cones, depending on whe...

متن کامل

Multistage Robust Mixed-Integer Optimization with Adaptive Partitions

We present a new partition-and-bound method for multistage adaptive mixed integer optimization (AMIO) problems that extends previous work on finite adaptability. The approach analyzes the optimal solution to a static (non-adaptive) version of an AMIO problem to gain insight into which regions of the uncertainty set are restricting the objective function value. We use this information to constru...

متن کامل

Thrifty Algorithms for Multistage Robust Optimization

We consider a class of multi-stage robust covering problems, where additional information is revealed about the problem instance in each stage, but the cost of taking actions increases. The dilemma for the decision-maker is whether to wait for additional information and risk the inflation, or to take early actions to hedge against rising costs. We study the “k-robust” uncertainty model: in each...

متن کامل

A Data-Driven Multistage Adaptive Robust Optimization Framework for Planning and Scheduling under Uncertainty

A novel data-driven approach for optimization under uncertainty based on multistage adaptive robust optimization (ARO) and nonparametric kernel density M-estimation is proposed. Different from conventional robust optimization methods, the proposed framework incorporates distributional information to avoid over-conservatism. Robust kernel density estimation with Hampel loss function is employed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-89188-6_36